

NPS-CS-09-008

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

Software Architecture Built from Behavior Models

 by

 Mikhail Auguston

 June 2009

 Approved for public release; distribution is unlimited

 Prepared for: TARDEC/Joint Center for Unmanned Ground Vehicles

THIS PAGE INTENTIONALLY LEFT BLANK

NAVAL POSTGRADUATE SCHOOL
Monterey, California 93943-5000

Daniel T. Oliver Leonard A. Ferrari
President Executive Vice President and
 Provost

This report was prepared for and funded by:
 TARDEC/Joint Center for Unmanned Ground Vehicles _

Reproduction of all or part of this report is authorized.

This report was prepared by:

____________ _____
Mikhail Auguston
Associate Professor

Reviewed by: Released by:

__________________ _______________________
Peter Denning
Chairman Karl Van Bibber
Department of Computer Science Vice President and
 Dean of Research

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
June 2009

3. REPORT TYPE AND DATES COVERED
Research; 9/2008 – 6/2009

4. TITLE AND SUBTITLE: Software Architecture Built from Behavior Models

6. AUTHOR(S) Mikhail Auguston

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School, Computer Science Department
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER
NPS-CS-09-008

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
TARDEC/Joint Center for Unmanned Ground Vehicles

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this report are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited
12b. DISTRIBUTION CODE

A
13. ABSTRACT (maximum 200 words)

This paper suggests an approach to formal software system architecture specification based on behavior
models. The behavior of the system is defined as a set of events (event trace) with two basic relations: precedence
and inclusion. The structure of event trace is specified using event grammars and other constraints organized into
schemas. The schema framework is amenable to stepwise architecture refinement, reuse, composition,
visualization, and application of automated tools for consistency checks. The concept of event attribute supports a
continuous architecture refinement up to executable design and implementation models.

15. NUMBER OF
PAGES 33

14. SUBJECT TERMS
Software architecture, Architecture Description Language, behavior model

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 1

Abstract
This paper suggests an approach to formal software system architecture specification based on

behavior models. The behavior of the system is defined as a set of events (event trace) with two basic
relations: precedence and inclusion. The structure of event trace is specified using event grammars and
other constraints organized into schemas. The schema framework is amenable to stepwise architecture
refinement, reuse, composition, visualization, and application of automated tools for consistency checks.
The concept of event attribute supports a continuous architecture refinement up to executable design and
implementation models.

Keywords
Software architecture, Architecture Description Language, behavior model

1. Introduction
Architecture development is done very early in the software design process and is concerned with

the high-level structure and properties of the system [28]. For example, [15] provides the following
definition:

“The software architecture of a program or computing system is the structure or structures of the
system, which comprise software elements, the externally visible properties of those elements, and the
relationships among them.”

 “When designers discuss or present a software architecture for a specific system, they typically

treat the system as a collection of interacting components. Components define the primary computations of
the application. The interactions or connections between components define the ways in which the
components communicate or otherwise interact with each other. In practice a large variety of component
and connector types are used to represent different forms of computation or interaction” [1].

The following aspects have emerged as characteristic for software architecture descriptions

[15][36].

• An architecture description belongs to a high level of abstraction, ignoring many of the implementation
details, such as algorithms and data structures.

• Software architecture plays a role as a bridge between requirements and implementation.

• An architecture specification should be supportive for the refinement process, and needs to be checked
carefully at each refinement step (preferably with tools).

• The architecture specification should support the reuse of well known architectural styles and patterns.
Practice has provided several architectural styles and referential architectures, as well established,
reusable architectural solutions. There should be flexible and expressive composition operators
supporting the refinement process.

• The software architect needs a number of different views of the software architecture for the various
uses and users [30] [36] (including visual representations, like diagrams).

One of the major concerns in software architecture design is the question of the behavior of the

system. The purpose of this paper is to demonstrate that behavior models may be used as a basis for
software architecture description, and structural and some other properties may be extracted from the
behavioral specifications.

Presented here is an approach for building system behavior models based on the concepts of event

and event traces. This position paper presents a sketch of the architecture description language Phoenix
(a.k.a. Monterey Phoenix, or Monty Phoenix, not to be confused with Monty Python) based on behavior
specifications, with an emphasis on the interaction and the synchronicity aspects of component behavior,
although component behavior related to functionality may be captured as well. The approach provides
abstractions for building architecture descriptions amenable to refinement toward more detailed design
specifications, and for validation and verification with formal methods and automated tools, such as Alloy

 2

Analyzer [5][24]. The framework supports extracting multiple views of the system from the same
architecture description, specification of behavior patterns at high level of abstraction and reuse of
architectures, and possible use as a basis for different automated tools. We find an inspiration in the
statement by D.Jackson: ”Exploiting tools to check arguments at the design and requirements level may be
more important, and it is often more feasible since artifacts at the higher level are much smaller” [26].

The main novelty of this work is in the framework for system behavior modeling based on event
traces, which provides a high level of abstraction for architecture description, supports stepwise refinement
up to detailed design models, and allows architecture reuse, composition, and tool use for sanity checks
during the process.

This paper is structured as follows. Sec. 2 introduces the concept of behavior modeling based on

events and event traces, gives a brief outline of related work on behavior modeling, and provides the first
example of an event grammar. The Phoenix concept of schema as an architecture behavior model is
described in Sec. 3, with introductory examples and the discussion of a schema’s semantics. Sec. 4 outlines
the approach to a schema’s composition, refinement, and reuse. In Sec. 5 event attributes and special events
for retrieving event attributes are discussed in the context of refinement towards detailed design and
implementation models. Sec. 6 and Sec. 7 give a preliminary discussion about the prospects for automation
tools use in architecture specification and refinement, and suggest potential future work.

2. Behavior Models
In a certain sense, the software development is a process entirely aimed at the design of a compact

description of a set of required behaviors. The source code written in any programming language - a finite
object by itself - specifies a potentially infinite number of execution paths.

SOFTWARE BEHAVIOR MODELS IN RELATED WORK
The following ideas of behavior modeling and formalization have provided inspiration and

insights for this work.

Literate programming introduced by D.Knuth laid the first inroads in the hierarchical refinement
of structure mapped into behavior, with the concept of pseudo-code and tools to support the refinement
process [29].

Bruegge, Hibbard [17], and Campbell, Habermann [18] have demonstrated the application of path
expressions for program monitoring and debugging. Path expressions in [36] have been used (semi-
formally) as a part of software architecture description.

A.Hoar’s CSP (Communicating Sequential Processes) [22][37] is a framework for process

modeling and formal reasoning about those models. This behavior modeling approach has been applied to
software architecture descriptions to specify a connector’s protocol [3][4][35].

Rapide [32] by Luckham et al. uses events and posets of events to characterize component

interaction.

D.Harel’s Statecharts became one of the most common behavior modeling frameworks, integrated

in broader architecture specification systems UML [16], and AADL [19].
In [43], Wang and Parnas proposed to use trace assertions to formally specify the externally observable

behavior of a software module and presented a trace simulator to symbolically interpret the trace

assertions and simulate the externally observable behavior of the module specified. The approach is

based on algebraic specifications and term rewriting.

 3

THE EVENT CONCEPT
The approach here focuses on the notion of an event, which is an abstraction for any detectable

action performed during the program execution, such as a statement execution, expression evaluation,
procedure call, message transmission and receit, etc.

Actions (or events) are evolving in time, and the behavior model represents the temporal
relationship between actions. This implies the necessity to introduce an ordering relation for events.
Semantics of parallel programming languages and even some sequential languages (such as C) do not
require the total ordering of actions, so partial event ordering is the most adequate method for this purpose
[31].

Actions performed during the program execution are at different levels of granularity, some of
them including other actions, e.g., a subroutine call event contains statement execution events. This
consideration brings inclusion relation to the model. Under this relationship events can be hierarchical
objects, and it becomes possible to consider behavior at appropriate levels of granularity.

Two basic relations are defined for events: precedence (PRECEDES) and inclusion (IN). Any two
events may be ordered in time, or one event may appear inside another event.

The behavior model of the system can be represented as a set of events with these two basic

relations defined for them (event trace). Each of the basic relations defines a partial order of events. Two
events are not necessarily ordered, that is, they may happen concurrently. Both relations are transitive, non-
commutative, non-reflexive, and satisfy distributivity constraints. The following axioms should hold for
any event trace. Let a, b, and c is events of any type.

Mutual Exclusion of Relations

Axiom 1) a PRECEDES b ⇒ ¬(a IN b)
Axiom 2) a PRECEDES b ⇒ ¬(b IN a)
Axiom 3) a IN b ⇒ ¬(a PRECEDES b)
Axiom 4) a IN b ⇒ ¬(b PRECEDES a)

Non-commutativity

Axiom 5) a PRECEDES b ⇒ ¬(b PRECEDES a)
Axiom 6) a IN b ⇒ ¬(b IN a)

Irreflexivity for PRECEDES and IN follows from non-commutativity.

Transitivity

Axiom 7) (a PRECEDES b) ∧ (b PRECEDES c) ⇒
 (a PRECEDES c)
Axiom 8) (a IN b) ∧ (b IN c) ⇒ (a IN c)

Distributivity

Axiom 9) (a IN b) ∧ (b PRECEDES c) ⇒
 (a PRECEDES c)
Axiom 10) (a PRECEDES b) ∧ (c IN b) ⇒

(a PRECEDES c)

Event trace is always a directed acyclic graph.

EVENT GRAMMAR

The structure of possible event traces is specified by an event grammar. A grammar rule specifies
structure for a particular event type (in terms of IN and PRECEDES relations). A grammar rule has form,

A:: right-hand-part;

where A is an event type name.

Event types that do not appear in the left hand part of rules are considered atomic and may be

refined later by adding corresponding rules.

There are the following event patterns for use in the grammar rule’s right hand part. Here B, C, D

stand for event type names or event patterns.

Events may be visualized by small circles, and basic relations - by arrows, like

IN

PRECEDES

1) Sequence denotes ordering of events under the PRECEDES relation. The rule A:: B C; means
that an event a of the type A contains ordered events b and c matching B and C, correspondingly (b IN a, c
IN a, and b PRECEDES c). A grammar rule may contain a sequence of more than two events, like A:: B C
D;

The rule A:: B C; specifies the following event trace.

A

B C

2) A:: (B | C); denotes an alternative - event B or event C.

C

A A

B or

3) A:: (* B *); means an ordered sequence of zero or more events of the type B. Here is an

example of an event trace satisfying this pattern:

A

B
B

B

 4

The relations induced by the transitivity and the distributivity axioms are not explicitly shown in
this and following pictures.

4) A:: [B]; denotes an optional event B.

A

B

A

or

5) A:: { B, C }; denotes a set of events B and C without an ordering relation between them.

C

A

B

6) A:: {* B *}; denotes a set of zero or more events B without an ordering relation between them.

Extension (+ B +) may be used to denote a sequence of one or more events B, and {+ B +} as a

set of one or more events B. Together with an (* … *) event pattern those may be useful for specifying
dynamic architectures. In both cases it is assumed that all iterated event instances are unique.

EXAMPLE OF AN EVENT GRAMMAR
The Shooting_competiton event contains a number of independent (i.e., potentially concurrent)

Shooting events.

Shooting_competition:: {* Shooting *};

The Shooting event contains a sequence of zero or more Shoot events.

Shooting:: (* Shoot *);

Each Shoot event starts with Fire event and may have one of two possible outcomes: Hit or Miss.

Shoot:: Fire (Hit | Miss);

Together these event grammar rules specify a set of possible event traces representing different

scenarios for the Shooting_competition.

3. Schema as a Behavior Specification for an Abstract Machine
An abstract machine is a model of a software system. The behavior of a particular abstract

machine is specified as a set of all possible event traces using a schema. The concept of the schema in
Phoenix has been inspired by Z schemas [41]. The schema is similar to the fundamental architectural
concept of configuration, which is a collection of interacting components and connectors, as introduced in
[1]. The purpose of the Phoenix schema is to introduce event types (the schema’s signature), and to define
the structure of possible event traces (in terms of IN and PRECEDES relations) using event grammar rules
and other constraints.

 5

The schema may define the behavior of the abstract machine on different levels of
abstraction/granularity. Any event trace specified by a schema should also satisfy Axioms 1) – 10), i.e. all
basic relations induced by the Axioms are included in the event trace structure by default.

A schema may define both finite and infinite traces, but most analysis tools for reasoning about a
system’s behavior assume that a trace is finite. Infinite traces, as usual, will bring additional challenges,
like the fairness issue.

Specifying the PRECEDES relation for a pair of events in the schema is usually a substantial
design decision, manifesting the presence of a cause/effect in the model or other essential dependency
condition for these events.

Note. Events are the basic building blocks of behavior models. An event represents an action (or
process) evolving in time, so it may be natural to use a verb as a name for an event type. Traditionally in
software architecture descriptions, nouns are used as names for processes (and data items). In the examples
below, when a noun N is used as a name for an event type, it usually means an action N or denotes an event
involving object N, for example, an event “read a character” may be named Get_char.

Some events appearing in the schema’s rule section at the left-hand side of the grammar rule are
marked as root events. A root event type should not appear in the grammar rule’s right hand part. There is
precisely one instance of each root event in any trace defined by the schema. The schema may contain also
auxiliary grammar rules defining event types used in the right-hand part of other grammar rules or
providing additional structure constraints. Usually root events correspond to the components and
connectors in traditional architecture descriptions, while other event types are used to specify event
structure and interactions.

Example 1. Simple transaction.

A very simple architectural model contains two components TaskA and TaskB with a connector
between them. The presence of a connector usually means that components can interact, for example send
and receive a message, call each other and pass a parameter, or use a shared memory to deliver a data item.
It is common to represent this kind of a system in a diagram like in Figure 1.

Task A TaskB

Figure 1. Two components and a connector

The schema called Simple_transaction specifies the behavior of components involved in a single
transaction.

Simple_transaction

root TaskA:: Send;

root TaskB:: Receive;

root Transaction:: Send Receive;

TaskA, Transaction share all Send;

TaskB, Transaction share all Receive;

The rule section introduces root events TaskA, TaskB, and Transaction, while Send and Receive
events are needed to specify the root event’s structure. The grammar rules specify the structure of the event
trace in terms of relations IN and PRECEDES. There is a single event of type TaskA containing a single
event Send (IN relation). Similarly for TaskB and Receive. The single event Transaction contains two

 6

 7

events – Send and Receive ordered w.r.t. PRECEDES relation. The use of PRECEDES represents the
intention to model a cause/effect relationship.

The event type stands for a set of event traces satisfying the event structure defined for that type.
The constraints section uses the predicate share all, which is defined as following (here X, Y are root
events, and Z is an event type).

X, Y share all Z ≡ { v: Z | v IN X} = {w: Z | w IN Y} ,

This equality holds for each trace that contains at least one Z, and there exists at least one event
trace satisfying the schema, such that the X and Y in this trace each have at least one event of the type Z.

Event sharing in Phoenix plays the role of a synchronization mechanism similar to the
communication events in CSP [22][37].

SCHEMA INTERPRETATION
Similar to the context-free grammars, event grammars could be used as production grammars to

generate instances of event traces. The grammar rules in a schema S can be used for the basic trace
generation, with the additional schema constraints and Axioms filtering the generated traces to a set of
traces called Basic(S). This set contains only traces, which satisfy all schemas’ constraints, and have only
events and relations imposed by the schema’s grammar rules and Axioms. The process of generating traces
from Basic(S) defines the semantics of the schema S and should be specified in the form of an abstract
machine, for example, similar to the Abstract Chemical Machine [14] [23]. If such an abstract machine can
be designed for a particular version of Phoenix, it becomes possible to claim that schemas are executable at
all levels of abstraction. The schema represents instances of behavior (event traces), in the same sense as a
Java source code represents instances of program execution. If a particular program execution path can be
extracted from a Java program by running it on the JVM, then a particular event trace from the Basic(S)
can be extracted by running S on the Phoenix abstract machine, i.e. by generating a trace instance.

Traces from Basic(S) can be refined by introducing additional events, event types, and basic
relations between them, while maintaining the consistency with original trace’s constraints and Axioms.
The set of all refined traces is called Refined(S). The schema S’ is a refinement of S if

Basic(S’) ⊆ Refined(S)

Checking this property during the refinement process may be one of the main applications for
formal methods and tools supporting the Phoenix framework.

Figure 2 renders the only event trace from the Basic(Simple_transaction). There may be other
traces consistent with the structure imposed by the schema, for example, a trace from Figure 2 with an
additional relation TaskA PRECEDES TaskB, but those traces with redundant relations (or redundant
events) not imposed by the schema are not accepted as members of the basic trace set defined by the
schema.

Alloy Analyzer [5][25] is a good candidate for implementing the Phoenix Abstract Machine.
Appendix 1 contains the Alloy model, which may produce refined traces consistent with the
Simple_transaction schema, generally the Alloy paradigm of generating all instances, that do not contradict
the model is more suitable for generating refined but not necessarily only basic traces. This causes certain
challenges when mapping Phoenix schemas into Alloy models, for example, see the last global constraint in
the Appendix 1. Removing it yields additional traces satisfying the model, but each of them has a redundant
relation. Increasing the scope of Alloy model (upper number of objects in this instance) also provides
examples of traces satisfying the schema’s constraints, but containing redundant events.

TaskA TaskB
Transaction

Send Receive

Figure 2. Example of event trace for Simple_transaction schema

This example demonstrates that both a component and a connector within a model are uniformly
characterized by the patterns of behavior; each of them is modeled as a certain activity using an event trace.
Synchronization patterns may be specified in the additional schema’s section, using share all constraints.
This behavior composition operation may be considered as a certain simplification and unification of the
“role” and “glue” concepts in [3][4].

The schemas may be viewed as a way to specify sets of event traces with basic binary relations or
graphs, i.e. as a kind of graph grammars [21] in a textual form. Behaviors may be specified at an
appropriate level of abstraction, without imposing unnecessary constraints and details of the behavior.

Example 2. Multiple strictly synchronized transactions (simple pipe/filter).

Yet another interpretation of the architecture in Figure 1 may assume that components are
involved in a strictly synchronized stream of transactions, i.e., the next Send may appear only when the
previous Receive has been accomplished.

Multiple_synchronized_transactions

root TaskA:: (* Send *);

root TaskB:: (* Receive *);

root Connector:: (* Send Receive *);

TaskA, Connector share all Send;

TaskB, Connector share all Receive;

TaskA

Send

Connector

Receive

 8

TaskB

Send

Receive

 9

Figure 3. Example of event trace for multiple synchronized transactions

An event trace specified by a scheme always satisfies Axioms 1) - 10) hence the transitivity of
PRECEDES between consecutive Receive and Send (PRECEDES relations enforced by the transitivity are
not shown).

The Connector event represents the communication activity, and may be refined further to provide
details of the synchronization protocol.

Example 3. Client/Server architecture [4][39]

Client_server

root Client:: {* Request *};

root Server:: {* Provide *};

root Connector:: Initialize
 {* (Request Provide) *}
 Close;

Client, Connector share all Request;

Server, Connector share all Provide;

In this behavior model requests may arrive in arbitrary order, each Request should be met by a
corresponding Provide event (cause/effect relation is imposed), and the whole connector should be
initialized before the first transaction and closed after the end of work.

ARCHITECTURE VISUALIZATION AND VIEWS
Different abstract views could be extracted from the Phoenix schemas. For example, let X and Y

be the root events in the schema S, if there is at least one event trace in Basic(S), such that the generic
predicate

CONNECTED(X, Y) ≡ ∃a ((a IN X) and (a IN Y))

is true on that trace, then a dependency exists between events X and Y in terms of sharing an
event. This may be a data item sharing event, or method’s call, or any other synchronized activity between
X and Y captured by the schema model. The root events correspond to components and connectors, and
usually are rendered as boxes in architecture diagrams. The dependency between them could be visualized
by connecting corresponding boxes in the diagram.

The architecture diagrams in Figure 4 (views of the static structure with respect to the root events)
are extracted from behavior models in schemas Simple_transaction and
Multiple_synchronized_transactions and are based on the CONNECTED predicate.

Task A Trans action TaskB

Sim p le_t rans action

Mu lt iple _ synchroni zed_tran sac tions

Task A Conne c tor TaskB

Figure 4. Diagrams extracted from the schemas

Those models seem to be more abstract than corresponding schemas, and missing some details
about the component’s interaction, but still may be of interest. This kind of abstraction is similar to a
number of architecture description techniques currently in use. For example, [28] points out basic
architecture elements being components, connectors, and behavior.

Defining appropriate predicates on the events in the schema and mapping those events and
relations into different kinds of diagrams may yield multiple architecture views. The IN relation provides
for choice of granularity in rendering the hierarchy of models. Event threads loosely coupled by
synchronization events (event sharing) may be used to model the separation of concerns issues. It seems
that this way of extracting views from the architecture descriptions could provide at least the logical,
process, and scenario (or event trace) views as suggested in the 4+1 view model [30].

4. Composition and Reuse
The compiler’s front-end model is inspired by [36][23] and the unforgettable picture of compiler

architecture from the “Dragon Book” [2] (page 13).

Example 4. Compiler front end in batch processing mode.

The simple model of lexical analyzer captures the behavior of the typical LEX machine.

Lexer
Input:: (* (Get_char | Unget_char) *);
Output:: (* Put_token *);
root Processing:: (* Token_recognition *);
include Token_processing
Processing, Input share all Get_char, Unget_char;
Processing, Output share all Put_token;

The root event is Processing, whereas Input and Output are auxiliary events to a large degree

similar to the role concept in [4]. Their role is to define sort of pre- and post- conditions for the Processing
component, formalizing our assumptions about input and output streams of events. These constraints
should be checked for consistency when added to the schema.

The structure of the Token_recognition event is defined in the schema Token_processing and is

included (reused) in the Lexer schema. It refines the Lexer behavior toward the typical Unix/Lex semantics,
when the regular expression in each Lex rule is applied independently, and hence no ordering is imposed.
Each RegExpr_Match consumes one or more Get_char events until all finite automata involved in the
token recognition enter the Error state, then the winner is selected and all look-ahead characters beyond the

 10

 11

recognized lexeme are returned back into the input stream by Unget_char; the Fire_rule event follows it. As
a result of the include composition operation the root mark is deleted.

Token_processing
root Token_recognition:: {* RegExpr_Match *}

 Fire_rule;
RegExpr_Match:: (+ Get_char +) (* Unget_char *);
Fire_rule:: Put_token;
all RegExpr_Match share all Get_char, Unget_char;
|{x: Get_char | x IN Token_recognition}| >
 |{ y: Unget_char | y IN Token_recognition}|;

The first constraint enables synchronization between a sequence of one or more consecutive

Get_char and a single Put_token, which follows this Get_char group via the Fire_rule. The second
constraint ensures that at least one character will be consumed. All those constraints are imposed on the
Lexer behavior when the schema is included.

The following schema provides a rough model of bottom-up parsing with a stack (represented by

Push and Pop events).

Parser
Input:: (* Get_token *);
Output:: (* Put_node *);

root Parsing:: Push -- push the start symbol
 (* Get_token (* Reduce *) Shift *)
 [Syntax_error];
Shift:: Push ;
Reduce:: (+ Pop +) Push Put_node;
include Stack;

Parsing, Input share all Get_token;
Parsing, Output share all Put_node;
Parsing, Stack share all Pop, Push;

This schema provides a rough model of bottom-up parsing with a stack (represented by Push and

Pop events). Put_node events represent the construction of a parse tree. The behavior of the stack can be
encapsulated for reuse in a separate schema and included in the Parser schema when needed. Stack
behavior constraint will be inherited from the merge.

Stack
__
root Stack_operation:: Push (* (Push | Pop) *);
__
∀x: Pop (|{ y: Push | y PRECEDES x}| >
 |{ z: Pop | z PRECEDES x}|);

The constraint reflects the absence of stack underflow. To merge both Lexer and Parser schemes

into a single scheme we need to tell how those components will interact. The following schema specifies
batch processing.

Batch_processing
root Batch:: Produce_tokens Consume_tokens;

 Produce_tokens:: (* Put_token *);
Consume_tokens:: (* Get_token *);

The ordering of Produce_tokens and Consume_tokens events in this schema ensures that

production of the whole set of tokens will precede the consumption.

The composition of the component and the connector architectures is described by the schema

composition operation merge. The result is a new schema Incremental_parsing. Since the Phoenix schema
represents a set of event traces defined by the rules within the schema, the schema’s name may be used
instead of X, Y in the share predicate. In this case, sharing is extended to events Z defined in the schema.
In fact, the schema S introduces an event type S, such that for all root events A within S relation A IN S
holds. This provides a rationale for the fact that schemas may be operands for the share all.

Batch_parsing
merge Lexer, Parser, Batch_processing ;

Lexer, Batch_processing share all Put_token;
Parser, Batch_processing share all Get_token;

The diagram on Figure 5 represents a simplified component/connector view of this architecture.

Lexer/Processing

Batch_processing/Batch

Parser/Parsing

Figure 5. Diagram extracted from the Batch_processing schema

Example 5. Compiler’s front end in incremental mode.

Yet another possible interaction is a mode in which the Parser requests the next token and triggers

an event inside the Lexer, generating a token (the traditional LEX/YACC operation pattern). The schema
Incremental represents this operation mode. The IN relation imposed here reflects the cause/effect
dependency or synchronization between events from Lexer and Parser schemas involved in the token
request/delivery. In fact, the Get_token event is now refined with the Token_recogniton event.

Incremental
Get_token:: Token_recognition;

The composition of components with another connector schema is done in the same fashion.

 12

Incremental_parsing
merge Lexer, Parser;
include Incremental;

Lexer, Parser share all Token_recognition;

The merged architecture defines a set of event traces where all structuring is inherited from Lexer,

Parser, and Incremental schemas with the additional constraints for sharing the token processing events.
The basic sanity checks for consistency of merged event sets (traces) may be reduced to standard regular
expression equivalence and inclusion problems, and can be done by automated tools.

The root events are inherited from all schemas. With the help of a CONNECTED predicate the

root events may be rendered in Figure 6 diagram. This time both Lexer and Parser components are
interacting directly via the shared Token_recogniton event, and there is no connector box.

Lexer/Processing

Parser/Pars ing

Figure 6. Diagram extracted from the Incremental_parsing schema

As [4] points out “… [there] is the need for a simple but powerful form of composition.
Architecture is inherently about putting parts together to make large systems.”

The way that the Incremental_parsing schema is composed bears an analogy with the Aspect

Oriented Programming approach [27].

The examples above demonstrate the architecture reuse. In practice the merge operation may yield

a schema, that does not have any event traces at all because of inconsistencies resulting from imposing the
union of constraints inherited from the participating schemas. Tools like Alloy Analyzer [5] can be used for
sanity checks to verify whether the merged schema still has trace instances.

ARCHITECTURAL STYLES AND PATTERNS
Here is yet another common example of a small architectural style.
Example 6. Buffered pipe/filter.

Suppose that the communication between the components is accomplished via a buffer of size N,
and not necessarily all sent messages should be consumed, i.e. some of them could stay in the buffer
indefinitely. Each message may be consumed no more than once, and the ordering of receiving may not
necessarily correspond to the ordering of sending.

Buffered_transaction

root TaskA:: (* Send *);

root TaskB:: (* Receive *);

root Transactions:: {* (Send Receive) *};

{ x: Send | x IN Transactions } ⊆ { x: Send | x IN TaskA};

 13

TaskB, Transactions share all Receive;

∀x: Send (|{ y: Send | y PRECEDES x}| -

 |{ z: Receive | z PRECEDES x}| < N);

Send Send

TaskA

TaskB

Transactions

Send

Receive

Receive

Figure 7. Example of Buffered_transaction trace

5. Event Attributes and Refinement
At the top levels of architecture description schemas usually are focused on capturing event trace

structure in terms of basic relations and event sharing (synchronization). With the progress of refinement
the need to introduce more detailed view on data flow starts to appear. In order to specify meaningful
system behavior properties events are enriched with attributes. An event may have a type and other
attributes, such as event begin time, end time, duration, program state associated with the event (i.e.
variable values at the beginning and at the end of event), etc.

To manage event attribute values the concept of special event is introduced. Typically a special
event represents some operation with event attributes and is enclosed in a pair of symbols / and /.

/ action changing or retrieving attribute values /

In addition there are special events that may influence structure of event trace for alternatives
depending on conditions of certain event attributes, like

IF (condition involving attributes) THEN E1 ELSE E2

This special event refines on the event alternative (E1 | E2) by making the choice depending on
the value of the condition.

In a similar way the number of event iterations may be constrained by conditions involving
attributes, like

WHILE(condition involving attributes) (* E *)
or

(* E *) UNTIL(condition involving attributes)

The number of iterations for (* … *) and {* … *} may be indicated explicitly as well, like (* A *)
(50).

Special event may be subjected to the basic relations IN and PRECEDES like any other event.

 14

 15

The additional constraint is that the semantics of special events requires them to be executed in
accordance to the PRECEDES. Thus if for special events S1 and S2 holds

S1 PRECEDES S2

then S1 should be evaluated before S2. If there is no PRECEDES relation the order of evaluation
is non-deterministic.

Special events make it possible to refine schemas (i.e. sets of event traces) close to the detailed
design or even implementation level. This notation provides a support for pseudo code development
inspired by [29]. The structure of event trace may depend on some initial attribute values.

Example 7. Implementation model

Using special events and event attributes it becomes possible to refine schemas to the level when
mapping into executable program becomes straightforward.

Factorial_calculation

root Main:: /enter (Factorial.input);/

 Factorial

 /print (Factorial.output);/ ;

Factorial:: IF (Factorial[1].input <= 1) THEN

 /Factorial[1].output = 1;/

 ELSE

 (/Factorial[2].input = Factorial[1].input -1;/

 Factorial

 /Factorial[1].output =

 Factorial[2].output * Factorial[1].input;/) ;

The Factorial[1] denotes the first instance of the event Factorial in the left hand part of the rule,
and Factorial[2] denotes the second instance of the event Factorial within the rule. This event grammar
describes event traces (sequences of special events in this case) representing calculation of the factorial and
depending on the attribute Factorial.input. It is obvious that this model can be transformed into
implementation in some common programming language.

Example 8. Refinement toward design

As another example, let’s refine the Shooting_competiton model introduced in Section 0 into a
more detailed simulation, which may be converted into an executable program, e.g. in Java with threads.

Shooting_Competition ::
 {* / Shooting.ammo =10; /
 Shooting *} (100);

The attribute Shooting.ammo is bound with the corresponding Shooting event. The (100)
constraint sets the number of Shooting events within the Shooting_competition.

Shooting:: Load / Shooting.points = 0; /
 WHILE (Shooting.ammo > 0)

(* Shoot

 16

 /Shooting.ammo -=1;/ *) ;

The WHILE constraint makes the number of Shoot events to be controlled as in a traditional
While loop statement, and effectively implies that the number of Shoot events is equal to the initial value
of Shooting.ammo attribute.

Shoot:: Fire

(Hit | Miss)
 / ENCLOSING Shooting .points +=

 Shoot.points; /;

Hit:: /ENCLOSING Shoot. points = Rand[1..10];/ ;
Miss:: /ENCLOSING Shoot. points = 0;/ ;

These grammar rules do not yet provide a mechanism for making a decision regarding choice of

Hit or Miss event, but such additional constraint can be added if needed. Nevertheless, the event grammar
above defines a set of event traces approximating the expected behaviors pretty closely. ENCLOSING
scope is determined by the IN event hierarchy, and is a technical convenience eliminating attribute copying
chains, like in traditional attribute grammars [33]. This model is not yet completely executable in
traditional sense, but could be refined into one by adding necessary design details. In general, each schema
refinement may add new events and additional constraints to event traces and therefore narrows the set of
event traces.

MODELS OF THE ENVIRONMENT

Example 9. A model of a system interacting with the environment.

The User schema represents the environment behavior in which the Calculator operates.

User
Use_calculator:: (* Perform_calculation *);

Perform_calculation::
 Enter_number

 Enter_operator
 Enter_number
 Request_result;

Enter_number:: (+ Press_digit_button +) ;

The model of Calculator.

Calculator
Calculator_in_action:: (* Single_calculation *);

Single_calculation::
 Get_number Get_operator Get_number
 IF (Get_operator.operation == ‘+’)
 / Single_calculation.result =

 Get_number[1].value +
 Get_number[2].value; /

 ELSE
 / Single_calculation.result =
 Get_number[1].value –

 17

 Get_number[2].value; / ;

Get_number:: / Get_number.value= 0; /
 (* Get_digit
 / Get_number.value =

 Get_number.value * 10 +
 Get_digit.value;/ *) ;

Show_result:: /show_result();/ ;

The following schema defines the interaction between the User and the Calculator by establishing

a connection between events in the environment and in the system.

Connection

Press_digit_button::
 /Get_digit.value = Press_digit_button.value;/
 Get_digit ;

Enter_operator::
 / Get_operator.operation = Enter_operator.operation;/
 Get_operator;

Request_result:: Show_result;

The model of a calculator interacting with the environment.

User_and_Calculator

merge User, Calculator;
include Connection;

User, Calculator share all Get_digit,
 Get_operator, Show_result

MORE GRAMMAR RULES
Sometimes the multiplicity of event pairs with the PRECEDES should be specified explicitly. The

multiplicity notation may be used within grammar rules.

A:: (B 1 - 1..* C);
One B and one or more C under PRECEDES.

A

B

C

C

C

A:: B C; is the default for A:: (B 1 – 1 C);

A:: (B 1 - * C); means one B and zero or more C.

A:: B [C]; is the same as A:: (B 1 – 0..1 C);

Example 10. Blackboard architecture.
Messages are announced on the blackboard and consumed in arbitrary order, each message may be

consumed zero or more times [38]. This generic schema may be merged with component schemas, which
impose more constraints on Announce/Receive events, for instance, some ordering.

Blackboard_transaction

Input:: {* Announce *};

Output:: {* Receive *};

root Transactions:: {* (Announce 1 - * Receive) *};

Input, Transactions share all Announce;

Output, Transactions share all Receive;

 18

6. Model Building, Analysis, and Tools
The following discussion inevitably is a very preliminary and has the purpose to outline the

potential of the Phoenix formalism to support “lightweight” automated formal methods. Each of the
suggested directions requires time and effort to build and evaluate corresponding tools, some pretty
straightforward, some more demanding.

First of all, since the approach is based on the concept of event trace as a set of events with basic
relations and additional constraints imposed by schemas, like event sharing, the full might and glory of
tools like Alloy Analyzer [5][25] may be deployed to generate instances of models (i.e. instances of event
traces), and to check properties expressed with set-theoretical operations and first order predicate logic.
Design of a model transformation tool from Phoenix to Alloy is pretty feasible. Small scope hypothesis
behinds Alloy use still makes simple sanity checks on Phoenix schemas meaningful.

Another path is represented by the experience of using CSP notation [13][22][37][35] to specify
architecture connector protocols [3][4] and to apply existing model checking tools like FDR [20] or PAT
[34] to verify these protocols. It is plausible that a subset of Phoenix could be converted into models
verifiable with such tools. Yet another way to check properties of event traces is exemplified by the
FORMAN language [6][7][8][9][10] for computations over event traces, which supports generic trace
property checks.

Standard sanity checks could be accomplished even with simple tools based on regular expression

 19

equivalence and inclusion checking. For example, if the Stack behavior requires the trace to satisfy path
expression

Push (* (Push | Pop) *)

but the Parser schema requires traces of the form

Push (* (+ Pop +) Push *)

the tool could provide a warning about potential inconsistency.

Similarly to Alloy, the same formalism used to specify models could be used to specify assertions
about event traces (in a similar way as schema constraints do), and is amenable to applying tools to verify
or refute those assertions with tools like Alloy Analyzer. The spectrum of properties covers a broad range
from purely structural properties (e.g. to assert that selected subset of events within trace is totally ordered)
to more detailed assertions involving event attributes. Of special interest may be properties involving
event’s timing attributes. Event duration and frequency estimates obtained from the model may be used to
figure out throughput and latency estimates.

The above considerations lead to the conjecture that model refinement may be supported by

reasonable automated sanity checks. It has been noted that architecture description framework needs
“capabilities to validate, and measure the performance of architecture before the system is built, and to test
the conformance of a system to a predefined standard architecture” [32].

Visualization tools for schemas are of interest as well, and may be supported by tools to

define/extract/render customized diagrams from the Phoenix models.

7. Future work
First of all, schema formalism needs precise and rigorous syntax and semantics definition to make

the structure of event traces defined by the schema unambiguous. An abstract machine able to generate
basic traces could provide an acceptable solution to Phoenix semantics definition.

Second, a methodology, guidelines, and a representative collection of reusable templates for
Phoenix framework are essential to help users to develop intuition and skills to use it, in particular, the skill
of choosing the right abstraction level for refinement and reuse.

Software architecture modeling touches on the very fundamental issues in software design process
and has substantial consequences for the next phases in software system design. This paper is just a very
preliminary sketch of some approaches to the problem. There are many threads of future research stemming
from the ideas described above. Each of those will require significant investment into a rigorous design and
experimentation. The following outlines several prospective directions to pursue.

Schemas composition and reuse.

A good collection of typical architecture styles and templates (e.g. different specializations of
broadcasting, pipe/filter, client/server) could provide the basis for automated code synthesis tools. This also
requires a broad and flexible assortment of schema composition operators. Operations with schemas will
require tools for simple sanity checks, trace instance generation, and refinement checking.

Visualization and architecture views.

Libraries of predefined predicates, functions, and tools to extract and visualize views are needed.
Throughput/latency estimate.

Given duration and frequency estimates for events within components and connectors it becomes
possible to estimate throughput and latency.

Environment models and Business Process Models for System Engineering.

Behavior of the environment may be modeled by event grammars [11] [12] and merged with the
system models. The result is amenable to the same kind of analysis and verification as a stand-alone

 20

architecture long before the detailed design and implementation of the system are available [40]. The model
of interaction between the system and its environment may be of special value for reactive and real-time
systems.

Process involving the software system as a component also could be modeled as an appropriate set

of events, where timing and effort attributes are of special interest. This provides yet another aspect for the
environment modeling as a part of system architecture development, supported by smooth integration of the
system behavior models. Particular instances of event traces generated from such integrated schemas are
known as use cases, and may be of interest by itself, especially if this activity is supported by appropriate
visualization and analysis tools.

Model checking

It would not be surprising if rich enough Phoenix schemas could be mapped into adequate Kripke
structures and properties of schemas behavior could be specified with temporal logic formulas. Potential of
applying model checking power to a reasonable subset of Phoenix schemas is awaiting for it’s enthusiastic
researcher.

Use cases and architecture synthesis from examples.

An architecture model can be tested with tools like Alloy Analyzer [5], to verify, and to validate
the system model at the early stages of the design on instances of traces. But the reverse process may be of
interest as well. A representative set of event trace instances, or use cases, may be used to synthesize a
whole architecture scheme of which those are representatives. When the level of abstraction is coarse
enough this may be feasible, in a way similar to synthesizing Finite Automata from a representative sets of
acceptable input strings [42].

Dynamic and evolving architecture

Some of the presented event grammar patterns, like iterators, may be useful for modeling
dynamics of component/connector creation at the run time.

More specific event constructors like (SPAWN A) that inserts in the event trace an event A with

the only basic relation
(SPAWN A) PRECEDES A

may be useful to model independent process threads.

The (KILL A) special event may be added to capture dynamic architectures for exception handling

and other situations when an event A and all its offsprings (events under IN relation) should be
cancelled/destructed (i.e. deleted from the emerging trace) even before they are completed.

Meta-architecture, software product lines, domain-specific

architectures

Lex/yacc behavior example in Sec. 4 gives a flavor of the potential to specify reusable domain-
specific architectures. The Phoenix formalism could be extended to the next abstraction level to specify
meta-architectures.

 21

REFERENCES

[1] Gregory Abowd, Robert Allen, and David Garlan, Formalizing Style to Understand Descriptions of Software
Architecture, ACM Transactions on Software Engineering and Methodology 4(4):319-364, October 1995.

[2] A.Aho, R.Sethi, J.Ullman, Compilers, Principles, Techniques, and Tools, 1986, Addison-Wesley

[3] Robert J. Allen, A Formal Approach to Software Architecture, Ph.D. Thesis, Carnegie Mellon University, CMU
Technical Report CMU-CS-97-144, May 1997

[4] Robert Allen and David Garlan. A Formal Basis for Architectural Connection. In ACM Transactions on Software
Engineering and Methodology, Vol. 6(3): 213-249, July 1997.

[5] "Alloy Analyzer 4.1.10” MIT, Accessed May 8, 2009 http://alloy.mit.edu/community/software

[6] M. Auguston, "FORMAN -- A Program Formal Annotation Language", Proceedings of the 5th Israel Conference
on Computer Systems and Software Engineering, Gerclia, May 1991, IEEE Computer Society Press, 149-154.

[7] M. Auguston, "A language for debugging automation", Proceedings of the 6th International Conference on
Software Engineering and Knowledge Engineering, SEKE’94, Jurmala, Latvia, June 1994, Knowledge Systems
Institute, pp. 108-115.

[8] M. Auguston, "Program Behavior Model Based on Event Grammar and its Application for Debugging
Automation", in Proceedings of the 2nd International Workshop on Automated and Algorithmic Debugging,
Saint-Malo, France, May 1995.

[9] M. Auguston, P. Fritzson, "PARFORMAN -- an Assertion Language for Specifying Behavior when Debugging
Parallel Applications", International Journal of Software Engineering and Knowledge Engineering, vol.6, No 4,
1996, pp. 609-640

[10] M. Auguston, A. Gates, M. Lujan, "Defining a program Behavior Model for Dynamic Analyzers", Proceedings of
the 9th International Conference on Software Engineering and Knowledge Engineering, SEKE'97, Madrid, Spain,
June 1997, pp. 257-26

[11] Mikhail Auguston, James Bret Michael, Man-Tak Shing, Environment behavior models for scenario generation
and testing automation, International Conference on Software Engineering, Proceedings of the 1st International
Workshop on Advances in Model-Based Testing A-MOST’5, ACM SIGSOFT Software Engineering Notes, v.30
n.4, July 2000, in the ACM Digital Library.

[12] M.Auguston, B.Michael, M.Shing, Environment Behavior Models for Automation of Testing and Assessment of
System Safety, Information and Software Technology, Elsevier, Vol. 48, Issue 10 , October 2006, pp. 971-980

[13] Robert Allen and David Garlan. A formal basis for architectural connection. ACM Transactions on Software
Engineering and Methodology, July 1997.

[14] J.-P. Banâtre and D. Le Métayer, “Programming by Multiset Trans-formation,” Comm. ACM, vol. 36, no. 1, pp.
98–111, Jan. 1993.

[15] Bass, Len; Paul Clements, Rick Kazman, Software Architecture In Practice, Second Edition, Boston: Addison-
Wesley, 2003

[16] Grady Booch, Ivar Jacobson & Jim Rumbaugh (2000) OMG Unified Modeling Language Specification,
http://www.omg.org/docs/formal/00-03-01.pdf

[17] B. Bruegge, P. Hibbard, "Generalized Path Expressions: A High-Level Debugging Mechanism", The Journal of
Systems and Software 3, 1983, pp. 265-276.

[18] R.H. Campbell and A.N. Habermann, The Specification of Process Synchronization by Path Expressions, Lecture
Notes in Computer Science, No. 16, Apr. 1974, pp. 89-102. Vol. 14, No. 3, May 1989, pp. 147-150.

[19] Peter H. Feiler, David P. Gluch, John J. Hudak, The Architecture Analysis & Design Language (AADL): An
Introduction, Technical Note CMU/SEI-2006-TN-011,
http://www.sei.cmu.edu/publications/documents/06.reports/06tn011.html (accessed June 2009)

[20] FDR2 user manual. http://www.formal.demon.co.uk/fdr2manual/index.htm , 1999.

http://www.omg.org/docs/formal/00-03-01.pdf
http://www.sei.cmu.edu/publications/documents/06.reports/06tn011.html
http://www.formal.demon.co.uk/fdr2manual/index.htm

 22

[21] Handbook of Graph Grammars and Computing by Graph Transformation, (edited by G.Rosenberg), World
Scientific Publishing Co, 1997

[22] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[23] Inverardi, P.; Wolf, A.L., Formal specification and analysis of software architectures using the chemical abstract
machine model, IEEE Transactions on Software Engineering, Vol. 21, Issue 4, April 1995, pp.373 – 386

[24] Paola Inverardi, Alexander L. Wolf, and Daniel Yankelevich, Static Checking of System Behaviors Using Derived
Component Assumptions, ACM Transactions on Software Engineering and Methodology, vol. 9, no. 3, July 2000,
pp. 239-272.

[25] Jackson, Daniel. 2006. Software Abstractions: Logic, Language, and Analysis. Cambridge, Massachusetts: The
MIT Press.

[26] Jackson, Daniel, “A Direct Path to Dependable Software: Who could fault an approach that offers greater
credibility at reduced cost? ”, Communications of the ACM, Vol. 52 No. 4, 2009, Pages 78-88, A version of this
article with a fuller list of references is available at http://sdg.csail.mit.edu/publications.html

[27] Kiczales, Gregor; John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes, Jean-Marc Loingtier, and
John Irwin (1997). "Aspect-Oriented Programming". Proceedings of the European Conference on Object-Oriented
Programming, vol.1241. pp. 220–242.

[28] Jung Soo Kim, David Garlan, Analyzing Architectural Styles, January 2007,
http://acme.able.cs.cmu.edu/pubs/uploads/pdf/jss2006.pdf last accessed May 2009

[29] Donald E. Knuth. "Literate Programming". The Computer Journal, 27(2):97-111, May 1984

[30] Philippe Kruchten: Architectural Blueprints - the 4+1 View Model of Software Architecture. In: IEEE Software.
12 (6) November 1995, pp. 42-5

[31] L. Lamport, "Time, Clocks, and the Ordering of Events in a Distributed System", Communications of the ACM,
vol. 21, No. 7, July 1978, pp. 558-565.

[32] David C Luckham, Lary M. Augustin, John J. Kenney, James Vera, Doug Bryan, and Walter Mann. Specification
and analysis of system architecture using Rapide. IEEE Transactions on Software Engineering, Special Issue on
Software Architecture, 21(4):336–355, April 1995.

[33] Paakki, J. Attribute grammar paradigms - A high-level methodology in language implementation, ACM
Computing Surveys 27, 2 (June 1995), pp. 196-255.

[34] PAT: Process Analysis Toolkit An Enhanced Simulator, Model Checker and Refinement Checker,
http://www.comp.nus.edu.sg/~pat/

[35] Pelliccione, Patrizio; Inverardi, Paola; Muccini, Henry, CHARMY: A Framework for Designing and Verifying
Architectural Specifications, IEEE Transactions on Software Engineering, Vol. 35, No 3, 2009, pp.325-346

[36] Dewayne E. Perry and Alexander L. Wolf. ``Foundations for the Study of Software Architecture'', ACM SIGSOFT
Software Engineering Notes, 17:4 (1992), pp. 40-52.

[37] Bill Roscoe, The Theory and Practice of Concurrency, Prentice Hall International Series in Computer Science
(580pp), ISBN 0-13-674409-5

[38] Shaw, M. and Clements, P., A Field Guide to Boxology: Preliminary Classification of Architectural Styles for
Software Systems, COMPSAC97, 21st Int'l Computer Software and Applications Conference, 1997, pp. 6-13.

[39] Shaw, M and Garlan, D. 1996. Software Architecture: Perspectives on an Emerging Discipline. Prentice-Hall,
Englewood Cliffs, New Jersey.

[40] Joao Pedro Sousa, Bradley Schmerl, Peter Steenkiste and David Garlan. Activity Oriented Computing. In Soraya
Kouadri Mostefaoui, Zakaria Maamar and George Giaglis editors, Advances in Ubiquitous Computing: Future
Paradigms and Directions, IGI Publishing, Herschey, PA, 2008. Book link: http://www.igi-
pub.com/books/details.asp?ID=7314.

[41] J.M.Spivey, The Z Notation: A reference manual, Prentice Hall International Series in Computer Science, 1989.
(2nd ed., 1992)

[42] B. A. Trakhtenbrot and Ya. M. Barzdin, Finite automata: behavior and synthesis, Translated from the Russian by
D. Louvish, Amsterdam, North-Holland Pub. Co.; New York, American Elsevier, 1973.

http://sdg.csail.mit.edu/publications.html
http://acme.able.cs.cmu.edu/pubs/uploads/pdf/jss2006.pdf
http://www.comp.nus.edu.sg/%7Epat/
http://www.igi-pub.com/books/details.asp?ID=7314
http://www.igi-pub.com/books/details.asp?ID=7314

 23

[43] Wang, Y. and Parnas, D. Simulating the behavior of software modules by trace rewriting, IEEE Trans. Software
Eng. 20, 10 (Oct. 1994), pp. 750-759.

 24

APPENDIX 1.

This is a complete Alloy model for the Simple_transaction schema. Alloy Analyzer can produce
and visualize instances of event traces satisfying this model. Note that a special effort is needed to
eliminate redundant traces (in this case to suppress PRECEDES for the root events).

module simple_transaction

abstract sig Event {
 included_in: set Event,
 contains: set Event,
 followed_by: set Event
}

fact { included_in = ~ contains}

one sig trace {
 IN: Event -> Event,
 PRECEDES: Event -> Event
}
fact { trace.IN = ^included_in }
fact { trace.PRECEDES = ^ followed_by }

-- axioms ----------
-- mutual exclusion
fact {no trace.PRECEDES & trace.IN}
fact {no trace.PRECEDES & ~(trace.IN)}

-- non-commutativity
fact {no trace.IN & ~(trace.IN)}
fact {no trace.PRECEDES & ~(trace.PRECEDES)}

-- transitivity
fact {trace.PRECEDES = ^(trace.PRECEDES)}
fact {trace.IN = ^(trace.IN)}

-- distributivity
fact {all a, b, c: Event | (a -> b) in trace.IN and
 (b ->c) in trace.PRECEDES => (a ->c) in trace.PRECEDES }

fact {all a, b, c: Event | (a -> b) in trace.PRECEDES and
 (c ->b) in trace.IN =>
 (a ->c) in trace.PRECEDES }

-- Simple_transaction schema's model
one sig TaskA extends Event{}
 { one a: Send | a = contains}

one sig TaskB extends Event{}
 { one a: Receive | a = contains}

one sig Transaction extends Event{}
 { one a: Send, b: Receive | contains = (a+b) and

 25

 (a -> b) in trace.PRECEDES }

sig Send extends Event{}
 { no contains }

sig Receive extends Event{}
 { no contains }

-- shared constraints
fact {TaskA.contains & Send =
Transaction.contains & Send}

fact {TaskB.contains & Receive =
 Transaction.contains & Receive}

-- no PRECEDES for root events
-- neded to eliminate redundant traces
fact { no trace.PRECEDES[TaskA]
 no trace.PRECEDES.TaskB }

run {} for exactly 5 Event

THIS PAGE INTENTIONALLY LEFT BLANK

 26

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

	SOFTWARE BEHAVIOR MODELS IN RELATED WORK
	THE EVENT CONCEPT
	EVENT GRAMMAR
	EXAMPLE OF AN EVENT GRAMMAR
	SCHEMA INTERPRETATION
	ARCHITECTURE VISUALIZATION AND VIEWS
	ARCHITECTURAL STYLES AND PATTERNS
	MODELS OF THE ENVIRONMENT
	MORE GRAMMAR RULES
	REFERENCES
	APPENDIX 1.
	INITIAL DISTRIBUTION LIST

